/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/geometry/Point.h> #include <corsika/geometry/RootCoordinateSystem.h> #include <corsika/geometry/Sphere.h> #include <corsika/geometry/Vector.h> #include <corsika/units/PhysicalUnits.h> #include <cstdlib> #include <iostream> #include <typeinfo> using namespace corsika; using namespace corsika::geometry; using namespace corsika::units::si; int main() { // define the root coordinate system geometry::CoordinateSystem& root = geometry::RootCoordinateSystem::GetInstance().GetRootCoordinateSystem(); // another CS defined by a translation relative to the root CS CoordinateSystem cs2 = root.translate({0_m, 0_m, 1_m}); // rotations are possible, too; parameters are axis vector and angle CoordinateSystem cs3 = root.rotate(QuantityVector<length_d>{1_m, 0_m, 0_m}, 90 * degree_angle); // now let's define some geometrical objects: Point const p1(root, {0_m, 0_m, 0_m}); // the origin of the root CS Point const p2(cs2, {0_m, 0_m, 0_m}); // the origin of cs2 Vector<length_d> const diff = p2 - p1; // the distance between the points, basically the translation vector given above auto const norm = diff.squaredNorm(); // squared length with the right dimension // print the components of the vector as given in the different CS std::cout << "p2-p1 components in root: " << diff.GetComponents(root) << std::endl; std::cout << "p2-p1 components in cs2: " << diff.GetComponents(cs2) << std::endl; // by definition invariant under translations std::cout << "p2-p1 components in cs3: " << diff.GetComponents(cs3) << std::endl; // but not under rotations std::cout << "p2-p1 norm^2: " << norm << std::endl; assert(norm == 1 * meter * meter); Sphere s(p1, 10_m); // define a sphere around a point with a radius std::cout << "p1 inside s: " << s.Contains(p2) << std::endl; assert(s.Contains(p2) == 1); Sphere s2(p1, 3_um); // another sphere std::cout << "p1 inside s2: " << s2.Contains(p2) << std::endl; assert(s2.Contains(p2) == 0); // let's try parallel projections: auto const v1 = Vector<length_d>(root, {1_m, 1_m, 0_m}); auto const v2 = Vector<length_d>(root, {1_m, 0_m, 0_m}); auto const v3 = v1.parallelProjectionOnto(v2); // cross product auto const cross = v1.cross(v2).normalized(); // normalized() returns dimensionless, normalized vectors // if a CS is not given as parameter for getComponents(), the components // in the "home" CS are returned std::cout << "v1: " << v1.GetComponents() << std::endl; std::cout << "v2: " << v2.GetComponents() << std::endl; std::cout << "parallel projection of v1 onto v2: " << v3.GetComponents() << std::endl; std::cout << "normalized cross product of v1 x v2" << cross.GetComponents() << std::endl; return EXIT_SUCCESS; }