/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/process/energy_loss/EnergyLoss.h> #include <corsika/particles/ParticleProperties.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/geometry/Line.h> #include <cmath> #include <fstream> #include <iostream> #include <limits> using namespace std; using namespace corsika; using namespace corsika::units::si; using SetupParticle = corsika::setup::Stack::ParticleType; using SetupTrack = corsika::setup::Trajectory; namespace corsika::process::energy_loss { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; /** * PDG2018, passage of particles through matter * * Note, that \f$I_{\mathrm{eff}}\f$ of composite media a determined from \f$ \ln I = * \sum_i a_i \ln(I_i) \f$ where \f$ a_i \f$ is the fraction of the electron population * (\f$\sim Z_i\f$) of the \f$i\f$-th element. This can also be used for shell * corrections or density effects. * * The \f$I_{\mathrm{eff}}\f$ of compounds is not better than a few percent, if not * measured explicitly. * * For shell correction, see Sec 6 of https://www.nap.edu/read/20066/chapter/8#115 * */ HEPEnergyType EnergyLoss::BetheBloch(SetupParticle const& p, GrammageType const dX) { // all these are material constants and have to come through Environment // right now: values for nitrogen_D // 7 nitrogen_gas 82.0 0.49976 D E 0.0011653 0.0 1.7378 4.1323 0.15349 3.2125 10.54 auto Ieff = 82.0_eV; [[maybe_unused]] auto Zmat = 7; auto ZoverA = 0.49976_mol / 1_g; const double x0 = 1.7378; const double x1 = 4.1323; const double Cbar = 10.54; const double delta0 = 0.0; const double aa = 0.15349; const double sk = 3.2125; // end of material constants // this is the Bethe-Bloch coefficiet 4pi N_A r_e^2 m_e c^2 auto constexpr K = 0.307075_MeV / 1_mol * square(1_cm); HEPEnergyType const E = p.GetEnergy(); HEPMassType const m = p.GetMass(); double const gamma = E / m; int const Z = p.GetChargeNumber(); int const Z2 = Z * Z; HEPMassType constexpr me = particles::Electron::GetMass(); auto const m2 = m * m; auto constexpr me2 = me * me; double const gamma2 = gamma * gamma; double const beta2 = (gamma2 - 1) / gamma2; // 1-1/gamma2 (1-1/gamma)*(1+1/gamma); // (gamma_2-1)/gamma_2 = (1-1/gamma2); double constexpr c2 = 1; // HEP convention here c=c2=1 cout << "BetheBloch beta2=" << beta2 << " gamma2=" << gamma2 << endl; [[maybe_unused]] double const eta2 = beta2 / (1 - beta2); HEPMassType const Wmax = 2 * me * c2 * beta2 * gamma2 / (1 + 2 * gamma * me / m + me2 / m2); // approx, but <<1% HEPMassType const Wmax = 2*me*c2*beta2*gamma2; for HEAVY // PARTICLES Wmax ~ 2me v2 for non-relativistic particles cout << "BetheBloch Wmax=" << Wmax << endl; // Sternheimer parameterization, density corrections towards high energies // NOTE/TODO: when Cbar is 0 it needs to be approximated from parameterization -> // MISSING cout << "BetheBloch p.GetMomentum().GetNorm()/m=" << p.GetMomentum().GetNorm() / m << endl; double const x = log10(p.GetMomentum().GetNorm() / m); double delta = 0; if (x >= x1) { delta = 2 * (log(10)) * x - Cbar; } else if (x < x1 && x >= x0) { delta = 2 * (log(10)) * x - Cbar + aa * pow((x1 - x), sk); } else if (x < x0) { // and IF conductor (otherwise, this is 0) delta = delta0 * pow(100, 2 * (x - x0)); } cout << "BetheBloch delta=" << delta << endl; // with further low energies correction, accurary ~1% down to beta~0.05 (1MeV for p) // shell correction, <~100MeV // need more clarity about formulas and units const double Cadj = 0; /* // https://www.nap.edu/read/20066/chapter/8#104 HEPEnergyType Iadj = 12_eV * Z + 7_eV; // Iadj<163eV if (Iadj>=163_eV) Iadj = 9.76_eV * Z + 58.8_eV * pow(Z, -0.19); // Iadj>=163eV double const Cadj = (0.422377/eta2 + 0.0304043/(eta2*eta2) - 0.00038106/(eta2*eta2*eta2)) * 1e-6 * Iadj*Iadj + (3.858019/eta2 - 0.1667989/(eta2*eta2) + 0.00157955/(eta2*eta2*eta2)) * 1e-9 * Iadj*Iadj*Iadj; */ // Barkas correction O(Z3) higher-order Born approximation // see Appl. Phys. 85 (1999) 1249 // double A = 1; // if (p.GetPID() == particles::Code::Nucleus) A = p.GetNuclearA(); // double const Erel = (p.GetEnergy()-p.GetMass()) / A / 1_keV; // double const Llow = 0.01 * Erel; // double const Lhigh = 1.5/pow(Erel, 0.4) + 45000./Zmat * pow(Erel, 1.6); // double const barkas = Z * Llow*Lhigh/(Llow+Lhigh); // RU, I think the Z was // missing... double const barkas = 1; // does not work yet // Bloch correction for O(Z4) higher-order Born approximation // see Appl. Phys. 85 (1999) 1249 const double alpha = 1. / 137.035999173; double const y2 = Z * Z * alpha * alpha / beta2; double const bloch = -y2 * (1.202 - y2 * (1.042 - 0.855 * y2 + 0.343 * y2 * y2)); // cout << "BetheBloch Erel=" << Erel << " barkas=" << barkas << " bloch=" << bloch << // endl; double const aux = 2 * me * c2 * beta2 * gamma2 * Wmax / (Ieff * Ieff); return -K * Z2 * ZoverA / beta2 * (0.5 * log(aux) - beta2 - Cadj / Z - delta / 2 + barkas + bloch) * dX; } // radiation losses according to PDG 2018, ch. 33 ref. [5] HEPEnergyType EnergyLoss::RadiationLosses(SetupParticle const& vP, GrammageType const vDX) { // simple-minded hard-coded value for b(E) inspired by data from // http://pdg.lbl.gov/2018/AtomicNuclearProperties/ for N and O. auto constexpr b = 3.0 * 1e-6 * square(1_cm) / 1_g; return -vP.GetEnergy() * b * vDX; } HEPEnergyType EnergyLoss::TotalEnergyLoss(SetupParticle const& vP, GrammageType const vDX) { return BetheBloch(vP, vDX) + RadiationLosses(vP, vDX); } process::EProcessReturn EnergyLoss::DoContinuous(SetupParticle& p, SetupTrack const& t) { if (p.GetChargeNumber() == 0) return process::EProcessReturn::eOk; GrammageType const dX = p.GetNode()->GetModelProperties().IntegratedGrammage(t, t.GetLength()); cout << "EnergyLoss " << p.GetPID() << ", z=" << p.GetChargeNumber() << ", dX=" << dX / 1_g * square(1_cm) << "g/cm2" << endl; HEPEnergyType dE = TotalEnergyLoss(p, dX); auto E = p.GetEnergy(); const auto Ekin = E - p.GetMass(); auto Enew = E + dE; cout << "EnergyLoss dE=" << dE / 1_MeV << "MeV, " << " E=" << E / 1_GeV << "GeV, Ekin=" << Ekin / 1_GeV << ", Enew=" << Enew / 1_GeV << "GeV" << endl; auto status = process::EProcessReturn::eOk; if (-dE > Ekin) { dE = -Ekin; Enew = p.GetMass(); status = process::EProcessReturn::eParticleAbsorbed; } p.SetEnergy(Enew); MomentumUpdate(p, Enew); EnergyLossTot_ += dE; FillProfile(p, t, dE); return status; } LengthType EnergyLoss::MaxStepLength(SetupParticle const& vParticle, SetupTrack const& vTrack) const { if (vParticle.GetChargeNumber() == 0) { return units::si::meter * std::numeric_limits<double>::infinity(); } auto constexpr dX = 1_g / square(1_cm); auto const dE = -TotalEnergyLoss(vParticle, dX); // dE > 0 //~ auto const Ekin = vParticle.GetEnergy() - vParticle.GetMass(); auto const maxLoss = 0.01 * vParticle.GetEnergy(); auto const maxGrammage = maxLoss / dE * dX; return vParticle.GetNode()->GetModelProperties().ArclengthFromGrammage(vTrack, maxGrammage) * 1.0001; // to make sure particle gets absorbed when DoContinuous() is called } void EnergyLoss::MomentumUpdate(corsika::setup::Stack::ParticleType& vP, corsika::units::si::HEPEnergyType Enew) { HEPMomentumType Pnew = elab2plab(Enew, vP.GetMass()); auto pnew = vP.GetMomentum(); vP.SetMomentum(pnew * Pnew / pnew.GetNorm()); } void EnergyLoss::FillProfile(SetupParticle const& vP, SetupTrack const& vTrack, const HEPEnergyType dE) { using namespace corsika::geometry; auto const toStart = vTrack.GetPosition(0) - InjectionPoint_; auto const toEnd = vTrack.GetPosition(1) - InjectionPoint_; auto const v1 = (toStart * 1_Hz).dot(ShowerAxisDirection_); auto const v2 = (toEnd * 1_Hz).dot(ShowerAxisDirection_); geometry::Line const lineToStartBin(InjectionPoint_, ShowerAxisDirection_ * v1); geometry::Line const lineToEndBin(InjectionPoint_, ShowerAxisDirection_ * v2); SetupTrack const trajToStartBin(lineToStartBin, 1_s); SetupTrack const trajToEndBin(lineToEndBin, 1_s); GrammageType const grammageStart = vP.GetNode()->GetModelProperties().IntegratedGrammage(trajToStartBin, trajToStartBin.GetLength()); GrammageType const grammageEnd = vP.GetNode()->GetModelProperties().IntegratedGrammage(trajToEndBin, trajToEndBin.GetLength()); const int binStart = grammageStart / dX_; const int binEnd = grammageEnd / dX_; std::cout << "energy deposit of " << -dE << " between " << grammageStart << " and " << grammageEnd << std::endl; auto energyCount = HEPEnergyType::zero(); auto fill = [&](int bin, GrammageType weight) { const auto dX = grammageEnd - grammageStart; if (dX > dX_threshold_) { auto const increment = -dE * weight / (grammageEnd - grammageStart); Profile_[bin] += increment; energyCount += increment; std::cout << "filling bin " << bin << " with weight " << weight << ": " << increment << std::endl; } }; // fill longitudinal profile fill(binStart, (1 + binStart) * dX_ - grammageStart); fill(binEnd, grammageEnd - binEnd * dX_); if (binStart == binEnd) { fill(binStart, -dX_); } for (int bin = binStart + 1; bin < binEnd; ++bin) { fill(bin, dX_); } std::cout << "total energy added to histogram: " << energyCount << std::endl; } void EnergyLoss::PrintProfile() const { std::ofstream file("EnergyLossProfile.dat"); cout << "# EnergyLoss PrintProfile X-bin [g/cm2] dE/dX [GeV/g/cm2] " << endl; double const deltaX = dX_ / 1_g * square(1_cm); for (auto v : Profile_) { file << v.first * deltaX << " " << v.second / (deltaX * 1_GeV) << endl; } } } // namespace corsika::process::energy_loss