/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/cascade/Cascade.h> #include <corsika/process/ProcessSequence.h> #include <corsika/process/hadronic_elastic_model/HadronicElasticModel.h> #include <corsika/process/tracking_line/TrackingLine.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/environment/Environment.h> #include <corsika/environment/HomogeneousMedium.h> #include <corsika/environment/NuclearComposition.h> #include <corsika/geometry/Sphere.h> #include <corsika/process/sibyll/Decay.h> #include <corsika/process/sibyll/Interaction.h> #include <corsika/process/sibyll/NuclearInteraction.h> #include <corsika/process/pythia/Decay.h> #include <corsika/process/pythia/Interaction.h> #include <corsika/process/track_writer/TrackWriter.h> #include <corsika/process/particle_cut/ParticleCut.h> #include <corsika/units/PhysicalUnits.h> #include <corsika/random/RNGManager.h> #include <corsika/utl/CorsikaFenv.h> #include <boost/type_index.hpp> using boost::typeindex::type_id_with_cvr; #include <iostream> #include <limits> #include <typeinfo> using namespace corsika; using namespace corsika::process; using namespace corsika::units; using namespace corsika::particles; using namespace corsika::random; using namespace corsika::setup; using namespace corsika::geometry; using namespace corsika::environment; using namespace std; using namespace corsika::units::si; // // The example main program for a particle cascade // int main() { feenableexcept(FE_INVALID); // initialize random number sequence(s) random::RNGManager::GetInstance().RegisterRandomStream("cascade"); // setup environment, geometry using EnvType = Environment<setup::IEnvironmentModel>; EnvType env; auto& universe = *(env.GetUniverse()); auto theMedium = EnvType::CreateNode<Sphere>(Point{env.GetCoordinateSystem(), 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); using MyHomogeneousModel = HomogeneousMedium<IMediumModel>; theMedium->SetModelProperties<MyHomogeneousModel>( 1_kg / (1_m * 1_m * 1_m), NuclearComposition(std::vector<particles::Code>{particles::Code::Hydrogen}, std::vector<float>{(float)1.})); universe.AddChild(std::move(theMedium)); const CoordinateSystem& rootCS = env.GetCoordinateSystem(); // setup processes, decays and interactions tracking_line::TrackingLine tracking; const std::vector<particles::Code> trackedHadrons = { particles::Code::PiPlus, particles::Code::PiMinus, particles::Code::KPlus, particles::Code::KMinus, particles::Code::K0Long, particles::Code::K0Short}; random::RNGManager::GetInstance().RegisterRandomStream("s_rndm"); random::RNGManager::GetInstance().RegisterRandomStream("pythia"); // process::sibyll::Interaction sibyll(env); process::pythia::Interaction pythia; // process::sibyll::NuclearInteraction sibyllNuc(env, sibyll); // process::sibyll::Decay decay(trackedHadrons); process::pythia::Decay decay(trackedHadrons); process::particle_cut::ParticleCut cut(20_GeV); // random::RNGManager::GetInstance().RegisterRandomStream("HadronicElasticModel"); // process::HadronicElasticModel::HadronicElasticInteraction // hadronicElastic(env); process::track_writer::TrackWriter trackWriter("tracks.dat"); // assemble all processes into an ordered process list // auto sequence = sibyll << decay << hadronicElastic << cut << trackWriter; auto sequence = pythia << decay << cut << trackWriter; // cout << "decltype(sequence)=" << type_id_with_cvr<decltype(sequence)>().pretty_name() // << "\n"; // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Proton; const HEPMassType mass = particles::Proton::GetMass(); const HEPEnergyType E0 = 100_GeV; double theta = 0.; double phi = 0.; { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt(Elab * Elab - m * m); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi), -ptot * cos(theta)); }; auto const [px, py, pz] = momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0); auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << " phi=" << phi << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl; Point pos(rootCS, 0_m, 0_m, 0_m); stack.AddParticle( std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType>{ beamCode, E0, plab, pos, 0_ns}); } // define air shower object, run simulation cascade::Cascade EAS(env, tracking, sequence, stack); EAS.Init(); EAS.Run(); cout << "Result: E0=" << E0 / 1_GeV << endl; cut.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy(); cout << "total energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1.) * 100 << endl; }