/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/process/energy_loss/EnergyLoss.h> #include <corsika/particles/ParticleProperties.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <cmath> #include <iostream> #include <limits> using namespace std; using namespace corsika; using namespace corsika::units::si; using namespace corsika::setup; using Particle = Stack::ParticleType; using Track = Trajectory; namespace corsika::process::EnergyLoss { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt((Elab - m) * (Elab + m)); }; EnergyLoss::EnergyLoss() : fEnergyLossTot(0_GeV) {} /** * PDG2018, passage of particles through matter * * Note, that \f$I_{\mathrm{eff}}\f$ of composite media a determined from \f$ \ln I = \sum_i * a_i \ln(I_i) \f$ where \f$ a_i \f$ is the fraction of the electron population * (\f$\sim Z_i\f$) of the \f$i\f$-th element. This can also be used for shell * corrections or density effects. * * The \f$I_{\mathrm{eff}}\f$ of compounds is not better than a few percent, if not * measured explicitly. * * For shell correction, see Sec 6 of https://www.nap.edu/read/20066/chapter/8#115 * */ HEPEnergyType EnergyLoss::BetheBloch(Particle& p, GrammageType const dX) { // all these are material constants and have to come through Environment // right now: values for nitrogen_D // 7 nitrogen_gas 82.0 0.49976 D E 0.0011653 0.0 1.7378 4.1323 0.15349 3.2125 10.54 auto Ieff = 82.0_eV; auto Zmat = 7; auto ZoverA = 0.49976_mol/1_g; const double x0 = 1.7378; const double x1 = 4.1323; const double Cbar = 10.54; const double delta0 = 0.0; const double aa = 0.15349; const double sk = 3.2125; // end of material constants // this is the Bethe-Bloch coefficiet 4pi N_A r_e^2 m_e c^2 auto const K = 0.307075_MeV / 1_mol * square(1_cm); HEPEnergyType const E = p.GetEnergy(); HEPMassType const m = p.GetMass(); double const gamma = E / m; double const Z = p.GetChargeNumber(); double const Z2 = pow(Z, 2); HEPMassType const me = particles::Electron::GetMass(); auto const m2 = m * m; auto const me2 = me * me; double const gamma2 = pow(gamma, 2); double const beta2 = (gamma2-1)/gamma2; // 1-1/gamma2 (1-1/gamma)*(1+1/gamma); (gamma_2-1)/gamma_2 = (1-1/gamma2); double const c2 = 1; // HEP convention here c=c2=1 cout << "BetheBloch beta2=" << beta2 << " gamma2=" << gamma2 << endl; double const eta2 = beta2/(1 - beta2); HEPMassType const Wmax = 2*me*c2*beta2*gamma2 / (1 + 2*gamma*me/m + me2/m2); // approx, but <<1% HEPMassType const Wmax = 2*me*c2*beta2*gamma2; for HEAVY PARTICLES // Wmax ~ 2me v2 for non-relativistic particles cout << "BetheBloch Wmax=" << Wmax << endl; // Sternheimer parameterization, density corrections towards high energies // NOTE/TODO: when Cbar is 0 it needs to be approximated from parameterization -> MISSING cout << "BetheBloch p.GetMomentum().GetNorm()/m=" << p.GetMomentum().GetNorm()/m << endl; double const x = log10(p.GetMomentum().GetNorm()/m); double delta = 0; if (x>=x1) { delta = 2*(log(10))*x - Cbar; } else if (x<x1 && x>=x0) { delta = 2*(log(10))*x - Cbar + aa*pow((x1-x), sk); } else if (x<x0) { // AND IF CONDUCTOR (otherwise, this is 0) delta = delta0*pow(100,2*(x-x0)); } cout << "BetheBloch delta=" << delta << endl; // with further low energies correction, accurary ~1% down to beta~0.05 (1MeV for p) // shell correction, <~100MeV // need more clarity about formulas and units const double Cadj = 0; /* // https://www.nap.edu/read/20066/chapter/8#104 HEPEnergyType Iadj = 12_eV * Z + 7_eV; // Iadj<163eV if (Iadj>=163_eV) Iadj = 9.76_eV * Z + 58.8_eV * pow(Z, -0.19); // Iadj>=163eV double const Cadj = (0.422377/eta2 + 0.0304043/(eta2*eta2) - 0.00038106/(eta2*eta2*eta2)) * 1e-6 * Iadj*Iadj + (3.858019/eta2 - 0.1667989/(eta2*eta2) + 0.00157955/(eta2*eta2*eta2)) * 1e-9 * Iadj*Iadj*Iadj; */ // Barkas correction O(Z3) higher-order Born approximation // see Appl. Phys. 85 (1999) 1249 double A = 1; if (p.GetPID() == particles::Code::Nucleus) A = p.GetNuclearA(); double const Erel = p.GetEnergy()/A / 1_keV; double const Llow = 0.01 * Erel; double const Lhigh = 1.5/pow(Erel,0.4) + 45000/Zmat * pow(Erel, 1.6); double const barkas = Z * Llow*Lhigh/(Llow+Lhigh); // RU, I think the Z was missing... // Bloch correction for O(Z4) higher-order Born approximation // see Appl. Phys. 85 (1999) 1249 const double alpha = 1./137.035999173; double const y2 = Z*Z * alpha*alpha/beta2; double const bloch = -y2 * (1.202 - y2*(1.042-0.855*y2+0.343*y2*y2) ); double const aux = 2*me*c2*beta2*gamma2*Wmax / (Ieff*Ieff); return K * Z2 * ZoverA / beta2 * (0.5 * log(aux) - beta2 - Cadj/Z - delta/2 + barkas + bloch) * dX; } process::EProcessReturn EnergyLoss::DoContinuous(Particle& p, Track& t, Stack&) { if (p.GetChargeNumber()==0) return process::EProcessReturn::eOk; GrammageType const dX = p.GetNode()->GetModelProperties().IntegratedGrammage(t, t.GetLength()); cout << "EnergyLoss " << p.GetPID() << ", z=" << p.GetChargeNumber() << ", dX=" << dX / 1_g * square(1_cm) << "g/cm2" << endl; HEPEnergyType dE = BetheBloch(p, dX); auto E = p.GetEnergy(); const auto Ekin = E - p.GetMass(); auto Enew = E + dE; cout << "EnergyLoss dE=" << dE / 1_MeV << "MeV, " << " E=" << E / 1_GeV << "GeV, Ekin=" << Ekin / 1_GeV << ", Enew=" << Enew / 1_GeV << "GeV" << endl; auto status = process::EProcessReturn::eOk; if (-dE > Ekin) { dE = -Ekin; Enew = p.GetMass(); status = process::EProcessReturn::eParticleAbsorbed; } p.SetEnergy(Enew); MomentumUpdate(p, Enew); fEnergyLossTot += dE; GetXbin(p, dE); return status; } units::si::LengthType EnergyLoss::MaxStepLength(Particle&, Track&) { return units::si::meter * std::numeric_limits<double>::infinity(); } void EnergyLoss::MomentumUpdate(corsika::setup::Stack::ParticleType& p, corsika::units::si::HEPEnergyType Enew) { HEPMomentumType Pnew = elab2plab(Enew, p.GetMass()); auto pnew = p.GetMomentum(); p.SetMomentum(pnew * Pnew / pnew.GetNorm()); } #include <corsika/geometry/CoordinateSystem.h> int EnergyLoss::GetXbin(corsika::setup::Stack::ParticleType& p, const HEPEnergyType dE) { using namespace corsika::geometry; const GrammageType deltaX = 10_g / square(1_cm); // binning CoordinateSystem const& rootCS = RootCoordinateSystem::GetInstance().GetRootCoordinateSystem(); Point pos1(rootCS, 0_m, 0_m, 0_m); Point pos2(rootCS, 0_m, 0_m, p.GetPosition().GetCoordinates()[2]); Vector delta = (pos2 - pos1) / 1_s; Trajectory t(Line(pos1, delta), 1_s); GrammageType const grammage = p.GetNode()->GetModelProperties().IntegratedGrammage(t, t.GetLength()); const int bin = grammage / deltaX; if (!fSave.count(bin)) { cout << "EnergyLoss new x bin " << bin << endl; } fSave[bin] += -dE / 1_GeV; return bin; } void EnergyLoss::SaveSave() { cout << "EnergyLoss Save " << endl; for (auto v : fSave) { cout << v.first << " " << v.second << endl; } } } // namespace corsika::process::EnergyLoss