/* * (c) Copyright 2018 CORSIKA Project, corsika-project@lists.kit.edu * * See file AUTHORS for a list of contributors. * * This software is distributed under the terms of the GNU General Public * Licence version 3 (GPL Version 3). See file LICENSE for a full version of * the license. */ #include <corsika/cascade/Cascade.h> #include <corsika/process/ProcessSequence.h> #include <corsika/process/hadronic_elastic_model/HadronicElasticModel.h> #include <corsika/process/stack_inspector/StackInspector.h> #include <corsika/process/tracking_line/TrackingLine.h> #include <corsika/setup/SetupStack.h> #include <corsika/setup/SetupTrajectory.h> #include <corsika/environment/Environment.h> #include <corsika/environment/HomogeneousMedium.h> #include <corsika/environment/NuclearComposition.h> #include <corsika/geometry/Sphere.h> #include <corsika/process/sibyll/Decay.h> #include <corsika/process/sibyll/Interaction.h> #include <corsika/process/sibyll/NuclearInteraction.h> #include <corsika/process/track_writer/TrackWriter.h> #include <corsika/units/PhysicalUnits.h> #include <corsika/random/RNGManager.h> #include <corsika/utl/CorsikaFenv.h> #include <iostream> #include <limits> #include <typeinfo> using namespace corsika; using namespace corsika::process; using namespace corsika::units; using namespace corsika::particles; using namespace corsika::random; using namespace corsika::setup; using namespace corsika::geometry; using namespace corsika::environment; using namespace std; using namespace corsika::units::si; class ProcessCut : public process::ContinuousProcess<ProcessCut> { HEPEnergyType fECut; HEPEnergyType fEnergy = 0_GeV; HEPEnergyType fEmEnergy = 0_GeV; int fEmCount = 0; HEPEnergyType fInvEnergy = 0_GeV; int fInvCount = 0; public: ProcessCut(const HEPEnergyType cut) : fECut(cut) {} template <typename Particle> bool isBelowEnergyCut(Particle& p) const { // nuclei if (p.GetPID() == particles::Code::Nucleus) { auto const ElabNuc = p.GetEnergy() / p.GetNuclearA(); auto const EcmNN = sqrt(2. * ElabNuc * 0.93827_GeV); if (ElabNuc < fECut || EcmNN < 10_GeV) return true; else return false; } else { // TODO: center-of-mass energy hard coded const HEPEnergyType Ecm = sqrt(2. * p.GetEnergy() * 0.93827_GeV); if (p.GetEnergy() < fECut || Ecm < 10_GeV) return true; else return false; } } bool isEmParticle(Code pCode) const { bool is_em = false; // FOR NOW: switch switch (pCode) { case Code::Electron: is_em = true; break; case Code::Positron: is_em = true; break; case Code::Gamma: is_em = true; break; default: break; } return is_em; } void defineEmParticles() const { // create bool array identifying em particles } bool isInvisible(Code pCode) const { bool is_inv = false; // FOR NOW: switch switch (pCode) { case Code::NuE: is_inv = true; break; case Code::NuEBar: is_inv = true; break; case Code::NuMu: is_inv = true; break; case Code::NuMuBar: is_inv = true; break; case Code::MuPlus: is_inv = true; break; case Code::MuMinus: is_inv = true; break; case Code::Neutron: is_inv = true; break; case Code::AntiNeutron: is_inv = true; break; default: break; } return is_inv; } template <typename Particle> LengthType MaxStepLength(Particle& p, setup::Trajectory&) const { cout << "ProcessCut: MinStep: pid: " << p.GetPID() << endl; cout << "ProcessCut: MinStep: energy (GeV): " << p.GetEnergy() / 1_GeV << endl; const Code pid = p.GetPID(); if (isEmParticle(pid) || isInvisible(pid) || isBelowEnergyCut(p)) { cout << "ProcessCut: MinStep: next cut: " << 0. << endl; return 0_m; } else { LengthType next_step = 1_m * std::numeric_limits<double>::infinity(); cout << "ProcessCut: MinStep: next cut: " << next_step << endl; return next_step; } } template <typename Particle, typename Stack> EProcessReturn DoContinuous(Particle& p, setup::Trajectory&, Stack&) { const Code pid = p.GetPID(); HEPEnergyType energy = p.GetEnergy(); cout << "ProcessCut: DoContinuous: " << pid << " E= " << energy << ", EcutTot=" << (fEmEnergy + fInvEnergy + fEnergy) / 1_GeV << " GeV" << endl; EProcessReturn ret = EProcessReturn::eOk; if (isEmParticle(pid)) { cout << "removing em. particle..." << endl; fEmEnergy += energy; fEmCount += 1; // p.Delete(); ret = EProcessReturn::eParticleAbsorbed; } else if (isInvisible(pid)) { cout << "removing inv. particle..." << endl; fInvEnergy += energy; fInvCount += 1; // p.Delete(); ret = EProcessReturn::eParticleAbsorbed; } else if (isBelowEnergyCut(p)) { cout << "removing low en. particle..." << endl; fEnergy += energy; // p.Delete(); ret = EProcessReturn::eParticleAbsorbed; } return ret; } void Init() { fEmEnergy = 0. * 1_GeV; fEmCount = 0; fInvEnergy = 0. * 1_GeV; fInvCount = 0; fEnergy = 0. * 1_GeV; // defineEmParticles(); } void ShowResults() { cout << " ******************************" << endl << " ParticleCut: " << endl << " energy in em. component (GeV): " << fEmEnergy / 1_GeV << endl << " no. of em. particles injected: " << fEmCount << endl << " energy in inv. component (GeV): " << fInvEnergy / 1_GeV << endl << " no. of inv. particles injected: " << fInvCount << endl << " energy below particle cut (GeV): " << fEnergy / 1_GeV << endl << " ******************************" << endl; } HEPEnergyType GetInvEnergy() const { return fInvEnergy; } HEPEnergyType GetCutEnergy() const { return fEnergy; } HEPEnergyType GetEmEnergy() const { return fEmEnergy; } }; // // The example main program for a particle cascade // int main() { feenableexcept(FE_INVALID); // initialize random number sequence(s) random::RNGManager::GetInstance().RegisterRandomStream("cascade"); // setup environment, geometry environment::Environment env; auto& universe = *(env.GetUniverse()); auto theMedium = environment::Environment::CreateNode<Sphere>( Point{env.GetCoordinateSystem(), 0_m, 0_m, 0_m}, 1_km * std::numeric_limits<double>::infinity()); // fraction of oxygen const float fox = 0.20946; using MyHomogeneousModel = environment::HomogeneousMedium<environment::IMediumModel>; theMedium->SetModelProperties<MyHomogeneousModel>( 1_kg / (1_m * 1_m * 1_m), environment::NuclearComposition( std::vector<particles::Code>{particles::Code::Nitrogen, particles::Code::Oxygen}, std::vector<float>{(float)1. - fox, fox})); universe.AddChild(std::move(theMedium)); const CoordinateSystem& rootCS = env.GetCoordinateSystem(); // setup processes, decays and interactions tracking_line::TrackingLine<setup::Stack, setup::Trajectory> tracking(env); stack_inspector::StackInspector<setup::Stack> p0(true); random::RNGManager::GetInstance().RegisterRandomStream("s_rndm"); process::sibyll::Interaction sibyll(env); process::sibyll::NuclearInteraction sibyllNuc(env, sibyll); process::sibyll::Decay decay; ProcessCut cut(20_GeV); // random::RNGManager::GetInstance().RegisterRandomStream("HadronicElasticModel"); // process::HadronicElasticModel::HadronicElasticInteraction // hadronicElastic(env); process::TrackWriter::TrackWriter trackWriter("tracks.dat"); // assemble all processes into an ordered process list // auto sequence = p0 << sibyll << decay << hadronicElastic << cut << trackWriter; auto sequence = p0 << sibyll << sibyllNuc << decay << cut << trackWriter; // setup particle stack, and add primary particle setup::Stack stack; stack.Clear(); const Code beamCode = Code::Nucleus; const int nuclA = 56; const int nuclZ = int(nuclA / 2.15 + 0.7); const HEPMassType mass = particles::Proton::GetMass() * nuclZ + (nuclA - nuclZ) * particles::Neutron::GetMass(); const HEPEnergyType E0 = nuclA * 100_GeV; // 1_PeV crashes with bad COMboost in second interaction (crash later) double theta = 0.; double phi = 0.; { auto elab2plab = [](HEPEnergyType Elab, HEPMassType m) { return sqrt(Elab * Elab - m * m); }; HEPMomentumType P0 = elab2plab(E0, mass); auto momentumComponents = [](double theta, double phi, HEPMomentumType ptot) { return std::make_tuple(ptot * sin(theta) * cos(phi), ptot * sin(theta) * sin(phi), -ptot * cos(theta)); }; auto const [px, py, pz] = momentumComponents(theta / 180. * M_PI, phi / 180. * M_PI, P0); auto plab = corsika::stack::MomentumVector(rootCS, {px, py, pz}); cout << "input particle: " << beamCode << endl; cout << "input angles: theta=" << theta << " phi=" << phi << endl; cout << "input momentum: " << plab.GetComponents() / 1_GeV << endl; Point pos(rootCS, 0_m, 0_m, 0_m); stack.AddParticle(std::tuple<particles::Code, units::si::HEPEnergyType, corsika::stack::MomentumVector, geometry::Point, units::si::TimeType, unsigned short, unsigned short>{ beamCode, E0, plab, pos, 0_ns, nuclA, nuclZ}); } // define air shower object, run simulation cascade::Cascade EAS(env, tracking, sequence, stack); EAS.Init(); EAS.Run(); cout << "Result: E0=" << E0 / 1_GeV << endl; cut.ShowResults(); const HEPEnergyType Efinal = cut.GetCutEnergy() + cut.GetInvEnergy() + cut.GetEmEnergy(); cout << "total energy (GeV): " << Efinal / 1_GeV << endl << "relative difference (%): " << (Efinal / E0 - 1.) * 100 << endl; }